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Young's modulus of porous brittle solids 

K. K. PHANI ,  S. K. NIYOGI 
Central Glass and Ceramic Research Institute, Calcutta - 7 0 0  0 3 2 .  India 

A new equation E = E0 (1 - aP)" where E and E0 are the Young's moduli at porosity, P, 
and zero, respectively, a and n are material constants, has been derived semi-empirically for 
describing the porosity dependence of Young's modulus of brittle solids. The equation satisfies 
quite well the exact theoretical solution for the values of Young's moduli at different porosities 
for model systems with ideal and non-ideal packing geometry. The equation shows excellent 
agreement with the data on =- and r-alumina over a wide range of porosity. Unlike the exist- 
ing porosity-elastic modulus equations, the proposed equation satisfies the boundary con- 
ditions and is inherently capable of treating isometric closed pores as well as non-isometric 
interconnected pores. The parameters a and n provide information about the packing geometry 
and pore structure of the material. 

1. Introduct ion 
The relation 

E = E0 exp ( - b P )  (1) 

where E and E0 are the elastic moduli at porosity P 
and zero, respectively, and b, the material constant, 
proposed by Spriggs [1] has widely been used to 
predict the elastic modulus of porous brittle solids 
[2-5]. Equation 1 is purely empirical in nature and not 
based on theory. It has been criticised [6] because it 
fails to satisfy the boundary condition that E equals 
zero for P = 1. Wang [7] has theoretically derived a 
relation between porosity and Young's modulus for 
materials composed of uniform-sized spherical par- 
ticles packed in cubic array and represented the exact 
solution graphically. He has shown that Equation 1 
approximately agrees with the exact solution over a 
narrow range of porosity only at the lower end. The 
deviation becomes greater for P >/ 0.2. He concluded 
that for correlating data over a wider range of porosity 
the value of b in Equation 1 cannot be treated as 
constant and the exponent cannot be considered a 
linear function of porosity. Therefore, he proposed an 
approximate solution with a quadratic exponent: 

E = E0 exp [ -  

which agreed with the exact 
well within -t- 2% accuracy. 
he suggested a relation with 

(bP + cp2)] (2) 

solution over P ~< 0.38 
For still higher porosity 
polynomial exponent: 

E = E 0 e x p [ - ( b P  + cP 2 + dP 3 + . . . ) ]  (3) 

where b, c, d, . . .  are material constants. Even 
Equations 2 and 3-are not free from the limitations 
mentioned earlier, and an infinite number of terms has 
to be added to the exponent to obtain E equal to zero 
at P ~< 1. Also for an infinite number of terms the 
material constants b, c, d etc., lose their physical sig- 
nificance and practical use of such an equation becomes 
cumbersome. With a view to finding a solution of 
the problem, a new equation has been derived semi- 
empirically and compared with the exact solution of 
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Wang [7] over the entire porosity range. The appli- 
cability of the equation to the data on =- and r-alumina 
given by Wang [7] and others [2, 8, 9] is also reported. 

2. Theoret ical  derivat ions 
Fig. I depicts a porous body of average porosity P 
having a constant area of cross-section A and length 
I, when the body is subjected to a load W in the x 
direction, the elongation A~ of an element A dx is 
given by: 

A5 = (W/A~)/Eo dx  (4) 

here A~ is the solid area of cross-section available in 
element dx. 

The total elongation ~ of the body is then given by: 

= ZA6 = I~ W/EoA~ dx  (5) 6 
d o  

If E is the apparent Young's modulus then 

E = (Wl.a)l(~lO (6) 

Combining Equation 5 and 6, the relation 

1 1 rl A 
dx (7) 

= Jo Z 
is obtained. 

Now, if Px is the average porosity of the element 
Adx, then 

A~ 
--= l-Px 
A 

and Equation 7, therefore, reduces to 

I I t 
= d x / 1  - <8) 

The integral on the right-hand side can only be 
evaluated if P~ is expressed in terms of x. This is 
possible if a certain idealized system is assumed for the 
pore-distribution in the body. However, for a real 
system, Equation 8 can be written as 

E = Eof(1 - P) (9) 
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Figure 1 Porous body in tension: a schematic view. 
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where f(1 - P) is a function of average porosity P. 
The function f(1 - P) must be of such form that 
Equation 9 satisfies the boundary conditions 

E =  Eo at P = O  

and 

E =  0 at P ~ < I  

The simplest mathematical function which satisfies 
such boundary conditions is a power function of the 
form (1 - aP)" where a and n are material constants. 
Hence Equation 9 can be expressed as 

E = E0 (1 - aP)" (10) 

Since Equation 10 satisfies the boundary condition 
E =  0 at P ~< 1 the material constant a can be 
defined as a = 1/P=it, where P~t is the critical porosity 
at which elastic modulus becomes zero. Schiller [10] 
has defined P=at in a similar way while investigating 

strength properties of gypsum. Knudsen [11] has 
studied contact area as a function of bulk density and 
theoretically derived the values of P=~t for polycrystal- 
line materials composed of uniform spherical particles 
arranged in cubic, orthorhombic and rhombohedral 
array as 0.476, 0.397 and 0.26, respectively. The cor- 
responding values of a become 2.10, 2.52 and 3.85. 
The minimum value of a is 1 corresponding to the 
maximum value of Pet i t  = 1. The value of a, therefore, 
lies in the range 1 ~< a ~< 3.85. Thus a may be defined 
as the packing geometry factor. 

Fig. 2 shows the theoretical curves for Young's 
modulus of porous materials given by Wang [7] along 
with Equation 10 fitted to the same curve. Spriggs' 
correlation as well as Wang's approximate solution is 
also plotted in Fig. 2. It is evident from Fig. 2 that 
Equation 10 closely approximates the theoretical 
curves over almost the entire range of porosity, the 
accuracy being well within -t-2% up to the porosity 
range of 0.4726. The values of (a, n) are equal to (1.8, 
0.651) (1.72, 1.347) and (1.641, 2.181) for curves 1, 2 
and 3, respectively, given by Wang [7]. 

3. Application to =- and B-alumina 
The porosity-Young's modulus data on =-alumina 
reported by Wang [7] are shown in Fig. 3 along with 
the theoretical solution for the non-ideal case (com- 
bined shear and hinge effect) as well as the equation 
proposed by Wang [7] and the present authors. Out of 
the 40 reported values of Young's modulus at different 
porosities, all except three could be read because of 
closeness of the data. The theoretical plot was made 
taking the E0 value to be equal to the reported Reuss- 
Hill average [12] 402.85 GPa. As suggested by Wang 
[7], Equation 2 was fitted to the data only up to 38% 
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Figure 2 Young's modulus as a function of porosity. The 
exact solution (e), Spfiggs' correlation (O), Wang's cor- 
relation ( × ) and the proposed equation ( - - - )  are shown 
in the plot. (I) Ideal case, (2) non-ideal case (shear effect), 
(3) non-ideal case (combined shear and hinge effect). 



480 

400 

Figure 3 Young's modulus plotted against porosity of 
=-alumina. A total of 37 data points as reported by Wang 
[7] is shown in the plot. (v) Voigt bound, (A) Reuss bound, 
(o) Hill average. (-.-) Theoretical equation, (--) Wang's 
equation, ( ) proposed equation. 
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porosity following the least square method taking a 
log-log relation between the factors involved, thus 
giving the values of E0 = 403.98 GPa, b = 1.77 and 
c = 9.35 instead of 401 GPa, 1.46 and 9.82, respect- 
ively, reported by him. Since the change of variables to 
log scale will affect the data scatter differently at dif- 
ferent points on the curve and also the positive and 
negative errors differently at the same point on the 
curve, the equation was fitted following the iterative 
least square analysis given by Lewis [13]. A computer 
program was run and the values of the parameters E0, 
b and c obtained are given in Table I along with the 
standard error of estimate. 

Based on the iterative least square analysis of Lewis 
[13], a method for fitting the proposed equation 10 
was evolved and is given in the Appendix. For the data 
fitted over the entire porosity range the values of E0, 
a and n are given in Table I along with the standard 
error of estimate. Computer programs were also run 
for Spriggs' equation, the linear equation g = E0 
(1 - hP) and Hasselman's equation [6] 

E0 l+l_(A+l)p 
and the values of all the parameters obtained are also 
given in Table I. 

As can be seen from Table I, the proposed equation 
best describes the data having minimum standard 
error of estimate. The value of E0 = 425.95 GPa 
obtained from this equation also agrees quite well with 
the Reuss-Hill average, the deviation being only 

5.7%. It may be mentioned that though Wang [7] 
has reported E0 = 401 GPa on the basis of linear 
least square method, the value of Eo increases to 
418.68GPa on evaluation by iterative least square 
method. The value of a = 2.76 indicates that E 
becomes zero at a porosity of 45.96% which is very 
close to that for cubic packing, i.e. 47.64%. Thus this 
confirms Wang's observation regarding the packing 
geometry of the material studied, although his equation 
fails to provide any specific information regarding 
this. It may also be mentioned that although the 
proposed equation has been fitted over the entire 
range of porosity (0 to 43.0%), it still provides a 
standard error of estimate lower than that obtained 
for Wang's equation. 

Fig. 4 shows the porosity-Young's modulus data on 
0t-alumina given by Knudsen [2] along with the plots 
of Wang's equation as well as the proposed equation 
fitted to the same curve. The data comprises 71 values 
of Young's modulus over the porosity range (1 to 
41%) reported by various investigators [14-19] of the 
material prepared by different fabrication processes, 
namely hot pressing, cold pressing, extrusion and cast- 
ing. Spriggs' equation, linear equation and Hassel- 
man's equation were fitted to the data as before. The 
values of all the parameters of the equation obtained 
are given in Table I. Of all the equations fitted 
over the entire range of porosity the proposed 
equation provides the best fit, having minimum 
standard error of estimate. Wang's equation provides 
a marginally lower standard error of estimate since it 
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Figure 4 Yotmg's modulus plotted against porosity of u-alumina. A total of 71 data points as compiled by Knudsen [2] is shown in the plot. 
(v) Voigt bound, (a) Reuss bound, (o) Hill average. ( - - - )  Wang's equation, ( ) proposed equation. 

has been fitted only up to 38% porosity. The value 
of E0 = 402.28 GPa obtained from the proposed 
equation is within 0.1% of the Reuss-Hill average. 
The value ofa  = 1 indicates that Young's modulus of 
the material becomes zero only at 100% porosity. It is 
apparent from Figs 3 and 4 that above a porosity of 
about 20%, the values of Young's modulus reported 
by Wang [7] decrease at a higher rate with increasing 
porosity than those compiled by Knudsen [2], the 
value being almost one-fourth of that in the latter case 
in the porosity range 36 to 38%. Wang [7] has attri- 
buted this to the transition of the pore structure from 
a disconnected to an interconnected one, above 20% 
porosity. In an ordered packing such as cubic packing, 
the contact area is largely reduced at higher porosity, 
consequently leading to much lower values of Young's 
modulus. The high values of Young's modulus at high 
porosity in the latter case, therefore, can be explained 
in terms of the pore structure being less interconnected 
due to the randomness of  packing, which leads to the 
value of a = 1 in this case. 

The porosity-Young's modulus data on =- and 
E-alumina reported by Coble and Kingery [8] and 
Evans et al. [9], respectively, are shown in Fig. 5 along 
with the regression lines fitted to the same curves. 
Coble and Kingery [8] derived the relation 

E = E0 (1 -- 1.91P + 0.91P 2) 

from Mackenzie's expression [20] on the basis of the 
boundary condition E = 0 at P = 1. This equation 
has also been fitted to their data only and shown in 
Fig 5. The equation yielded a value of E0 = 368.8 GPa 
(4% lower than the value quoted by them, since the 
data have been taken from their plot) with the stan- 
dard error of estimate 9.69. Here again, the proposed 
equation provided the best fit with the value of 
E0 = 391.69 GPa (Table I) which is only 2.8% lower 

than the Reuss-Hill average. The value of a = 1 also 
agrees with the assumption of Coble and Kingery for 
boundary conditions. It may be noted that even 
though the data cover a porosity range of 50.5% 
Spriggs' equation provides a value of 
E0 = 428.92GPa which is 6.5% higher than the 
Reuss-Hill average with a standard error of estimate 
less than that of Coble and Kingery [8]. 

For data on t-alumina over porosity range 2 
to 37%, the proposed equation provides a value of 
E0 = 208.22GPa with a standard error of esti- 
mate slightly higher than that of Spriggs' equation 
(Table I). Spriggs' equation provides the value of E0 = 
215.0GPa. It may, however, be mentioned that the 
value reported by Evans et al. [9] is 205 GPa from 
Spriggs' equation. 

While investigating his own data on =-alumina, 
Wang [7] showed that narrowing down the porosity 
range to P ~< 0.2, Spfiggs' equation provides a good fit 
yielding the value of E0 = 425 GPa, very close to the 
value of E0 established in the literature. Therefore, he 
concluded that this equation is for both open and 
dosed pores and for relatively small porosity ranges; 
his modification is for both open and closed pores 
over a wider porosity range. As can be seen from 
Table I, both in the case of Knudsen's and Evans 
et al's [2, 9] data, Spriggs' equation has been fitted up 
to to a porosity of 41 and 37%, respectively, yielding 
values of E0 which are" almost identical with those 
given by Wang's [7] equation by fitting up to the 
porosity range of 38%. It is also to be noted that in the 
case of data on t-alumina [9] Spriggs' equation 
shows a better correlation having a standard error of 
estimate 4.18 as against 4.78 in the case of Wang's 
equation. Also the material constant c in Wang's 
equation has a negative value in the case of Knudsen's 
data, thereby losing its physical significance. This is in 

2 6 1  



.oo  
~. 3o0 " . ~  

0= zoo ~.% "~ . . . . .  

 -,oo 

I I I / I 

0 0.1 0.2 0.3 0.4 0.5 
VOLUME FRACTION POROSITY 

Figure 5 Young's modulus plotted against porosity of =- and//-alumina. A total of 5 data points of =-alumina as reported by Coble and 
Kingery (o) [8] and that of 6 data points of/~-alumina as reported by Evans eta/. ( x )  [9] are shown in the plot. ( - - - )  Wang's equation, 
( ) proposed equation, ( - . - )  Mackenzie's equation. 

contradiction to Wang's suggestion that all the coef- 
ficients of the exponent are non-negative numbers. It 
may, therefore, be concluded that Wang's obser- 
vations on the applicability of Spriggs' equation as 
well as that proposed by him, possibly hold good for 
ordered packing only. A reasonably good fit of 
Spriggs' equation with the data of Knudsen [2], Coble 
and Kingery [8] and Evans et al. [9] over the entire 
range of porosity under study suggests that the range 
of porosity over which an exponential equation can 
be correlated depends on factors such as packing 
geometry, pore structure, etc. This inherent limitation 
of exponential equation is due to the fact that the 
expression describing the physical phenomenon does 
not satisfy the boundary conditions, affecting thereby 
the values of the constants evaluated by fitting to 
experimental data [6]. 

As can be seen from Table I, for the last three sets 
of data, the value of a = 1 indicates similar packing 
in all three cases. However, the value of n differs in 
each case having a minimum value of 2.14 in case of 
Coble and Kingery [8] and a maximum value of 4.12 
in case of Evans et al. [9]. Coble and Kingery [8] 
analysed their data by treating their material as 
a continuous solid phase with discontinuous iso- 
metric pores and obtained a good correlation with 
Mackenzie's equation for a continuous solid phase 
with isolated spherical pores. 

Analysis of the porosity-elastic modulus data on 
sintered glass with spherical pores [21] yielded values 
ofn  = 2.15 and 2.05 for Young's modulus and shear 
modulus, respectively, with a = 1 in both cases, 
suggesting that for random packing with closed 
spherical pores, the value of n will be approximately 
equal to 2. The value of n = 2.14 obtained from the 
data of Coble and Kingery [8], therefore, indicates 
that their material possibly contained almost spherical 
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closed pores. This is in agreement with their own 
observation for the material studied. The value of n 
for fl-alumina is 4.14. A study of the micrographs of 
the material given by Evans et al. [9] shows that the 
pores are very much irregular in shape and also inter- 
connected. This possibly led to rapid decrease of 
Young's modulus with increasing porosity, thereby, 
giving a high value ofn. Similar observations [22] have 
been made for gypsum which is known to have 
acicular grain structure with interconnected pores of 
highly irregular shape [10]. Thus, for Knudsen's data 
with n = 3.37 it can be concluded that the pores 
deviated from the spherical shape and were intercon- 
nected to a certain extent. The parameter n, therefore, 
is related to grain morphology and pore structure of 
the material. The lower the value of n, the more iso- 
metric and isolated is the pore phase and vice versa. 
For a specific packing geometry, the proposed equation 
is in agreement with the observations of Coble and 
Kingery [8] that minimum changes in elastic modu- 
lus will occur when the solid phase is continuous; 
the largest changes occur when the pore phase is 
continuous. 

4. Conc lus ion  
A new equation E = E0 (1 - aP)" has been derived 
semi-empiricaUy to describe the porosity dependence 
of Young's modulus. The material constant a in the 
equation may be defined as the "packing geometry 
factor", the value of which lies between 1 and 3.85. 
The other material constant, n, is dependent on grain 
morphology and pore geometry of the material. The 
present equation is capable of treating the transition 
of the pore structure from interconnected to isolated 
and has no limitation with regard to its applicability 
over any range of porosity. 

The equation showed good agreement with the data 



on =- and fl-alumina yielding E0 values very close to 
those reported in the literature. The values of  n 
increased from 2.14 for closed spherical pores, to 4.12 
for interconnected pores of  irregular shape. 

Appendix 
An initial estimate of a, i.e. a0 can be made from the 
plot E against P. 

The initial estimates of E0 and no can then bc made 
by the least square method assuming a log-log relation- 
ship between the factors involved. 

The next best estimate of a l, El and nl is then 
obtained f rom 

where fin, 6a and 
equations: 

S136E q- 

S,16E + 

S,25E + 

where 

nl = no + 6n 

al = a0 + Sa 

El = Eo + 6E 

6E are obtained by solving the 

$23 6n + $33 6a 

S126n + S136a 

$226n + $236a 

Sn = Y B  2 

$22 = ZC 2 

$33 = E D  2 

Sn  = Y~BC 

Sl3 = ZBD 

$23 = Y C D  

s,3 = A)D 

= Y ( E -  a ) a  

S,2 = Z ( E -  A)C 
and 

A = Eo exp [no In (1 - aoP)] 

B = exp [no In (1 - aoP)] 

= S41 

C = E 0 In (1 - aoP) exp [no In (1 - aoP)] 

D = E0 [exp {no In (1 - a0P)}] " ( - n 0 / 1  - aoP) 

A better estimate of  a2, E2 and n 2 can then be 
obtained from al, El and nz following the same 
procedure and the process can be continued until the 
desired degree of  accuracy has been obtained. 

The criteria 

6a;a; + 6n,n, + -~  < 0.001 

will provide a three-figure accuracy in the determined 
values. 
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